

SET-1

Series HFG1E/1

प्रश्न-पत्र कोड Q.P. Code 56/1/1

रोल नं. Roll No.							

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 19 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 35 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 19 printed pages.
- Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **35** questions.
- Please write down the serial number of the question in the answer-book before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

56/1/1

1

950 988

P.T.O.

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पिढ़ए और उनका सख़्ती से पालन कीजिए:

- इस प्रश्न-पत्र में 35 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं । (i)
- यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **क, ख, ग, घ** एवं **ङ** । (ii)
- खण्ड क में प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं। (iii)
- खण्ड ख में प्रश्न संख्या 19 से 25 तक अति लघु-उत्तरीय प्रकार के दो-दो अंकों के प्रश्न हैं। (iv)
- खण्ड ग में प्रश्न संख्या 26 से 30 तक लघु-उत्तरीय प्रकार के तीन-तीन अंकों के प्रश्न हैं। (v)
- खण्ड घ में प्रश्न संख्या 31 तथा 32 केस-आधारित चार-चार अंकों के प्रश्न हैं। (vi)
- खण्ड ङ में प्रश्न संख्या 33 से 35 दीर्घ-उत्तरीय प्रकार के पाँच-पाँच अंकों के प्रश्न हैं। (vii)
- प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड ख के 2 प्रश्नों में, खण्ड ग के 2 प्रश्नों (viii) में, खण्ड घ के 2 प्रश्नों में तथा खण्ड ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है /
- कैल्कुलेटर का उपयोग वर्जित है। (ix)

खण्ड क

प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।

 $18 \times 1 = 18$

- बहुलकों और प्रोटीनों के मोलर द्रव्यमान निर्धारण के लिए निम्नलिखित में से कौन-सा 1. अणुसंख्य गुणधर्म प्रयुक्त होता है ?
 - परासरण दाब (a)
 - हिमांक में अवनमन (b)
 - वाष्प दाब का आपेक्षिक अवनमन (c)
 - क्वथनांक का उन्नयन (d)
- अधिक ऊँचाई वाली जगहों पर रहने वाले लोगों के रुधिर और ऊतकों में ऑक्सीजन सांद्रता 2. निम्न होने का कारण है :
 - उच्च वायुमंडलीय दाब (a)
 - (b) निम्न ताप
 - निम्न वायुमंडलीय दाब (c)
 - निम्न ताप और उच्च वायुमंडलीय दाब दोनों (d)

56/1/1

CLICK HERE

General Instructions:

Read the following instructions carefully and strictly follow them:

- (i) This question paper contains 35 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** Sections **A**, **B**, **C**, **D** and **E**.
- (iii) In **Section A** Questions no. **1** to **18** are multiple choice (MCQ) type questions, carrying **1** mark each.
- (iv) In **Section B** Questions no. **19** to **25** very short answer (VSA) type questions, carrying **2** marks each.
- (v) In **Section C** Questions no. **26** to **30** are short answer (SA) type questions, carrying **3** marks each.
- (vi) In **Section D** Questions no. **31** and **32** are case-based questions carrying **4** marks each.
- (vii) In **Section E** Questions no. **33** to **35** are long answer (LA) type questions carrying **5** marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section D and 2 questions in Section E.
- (ix) Use of calculators is **not** allowed.

SECTION A

Questions no. 1 to 18 are Multiple Choice (MCQ) type Questions, carrying 1 mark each. 18×1=18

- 1. The colligative property used for the determination of molar mass of polymers and proteins is:
 - (a) Osmotic pressure
 - (b) Depression in freezing point
 - (c) Relative lowering in vapour pressure
 - (d) Elevation is boiling point
- **2.** Low concentration of oxygen in the blood and tissues of people living at high altitude is due to:
 - (a) high atmospheric pressure
 - (b) low temperature
 - (c) low atmospheric pressure
 - (d) both low temperature and high atmospheric pressure

56/1/1

(3)

CLICK HERE

950 5083

P.T.O.

3. निम्नलिखित अभिक्रिया के लिए सही सेल निरूपण है:

$$Zn + 2Ag^+ \longrightarrow Zn^{2+} + 2Ag$$

- (a) $2Ag \mid Ag^+ \mid |Zn| |Zn^{2+}$
- (b) $Ag^+ \mid Ag \parallel Zn^{2+} \mid Zn$
- (c) Ag \mid Ag⁺ \mid Zn \mid Zn²⁺
- (d) $\operatorname{Zn} \mid \operatorname{Zn}^{2+} \mid \mid \operatorname{Ag}^{+} \mid \operatorname{Ag}$

4. एक स्वतः प्रवर्तित अभिक्रिया के लिए ΔG और E_{thm}° होंगे :

(a) धनात्मक, ऋणात्मक

(b) ऋणात्मक, ऋणात्मक

(c) ऋणात्मक, धनात्मक

(d) धनात्मक, धनात्मक

5. निम्नलिखित में से कौन-सा उत्प्रेरक से प्रभावित होता है ?

(a) ΔH

(b) ΔG

(c) E_a

(d) ΔS

6. $H_2(g) + Cl_2(g) \xrightarrow{hv} 2HCl(g)$ के लिए अभिक्रिया कोटि है :

(a) 2

(b) 1

(c) 0

(d) 3

7. लैंथेनॉइड की सर्वाधिक सामान्य और स्थायी ऑक्सीकरण अवस्था है :

(a) + 2

(b) + 3

(c) + 4

(d) + 6

8. यौगिक $[Co(SO_4) (NH_3)_5]$ Br और $[Co(Br) (NH_3)_5]$ SO_4 निरूपित करते हैं :

(a) ध्रुवण समावयवता

(b) बंधनी समावयवता

(c) आयनन समावयवता

(d) उपसहसंयोजन समावयवता

9. ऐल्किल फ्लुओराइड का संश्लेषण सबसे अच्छी तरह से प्राप्त किया जाता है :

(a) मुक्त मूलकों से

- (b) स्वार्ट्ज़ अभिक्रिया से
- (c) सैंडमायर अभिक्रिया से
- (d) फिंकेलस्टीन अभिक्रिया से

10. अभिक्रिया $R - OH + HCl \xrightarrow{ZnCl_2} RCl + H_2O$ में ऐल्कोहॉल की अभिक्रियाशीलता का सही क्रम क्या है ?

(a) $1^{\circ} < 2^{\circ} < 3^{\circ}$

(b) $1^{\circ} > 3^{\circ} > 2^{\circ}$

(c) $1^{\circ} > 2^{\circ} > 3^{\circ}$

(d) $3^{\circ} > 1^{\circ} > 2^{\circ}$

56/1/1

3. The correct cell to represent the following reaction is:

$$Zn + 2Ag^+ \longrightarrow Zn^{2+} + 2Ag$$

- (a) $2Ag \mid Ag^+ \parallel Zn \mid Zn^{2+}$
- (b) $Ag^+ \mid Ag \mid \mid Zn^{2+} \mid Zn$
- (c) Ag \mid Ag⁺ \mid Zn \mid Zn²⁺
- (d) $\operatorname{Zn} | \operatorname{Zn}^{2+} | \operatorname{Ag}^{+} | \operatorname{Ag}$

4. ΔG and E_{cell}° for a spontaneous reaction will be :

- (a) positive, negative
- (b) negative, negative
- (c) negative, positive
- (d) positive, positive

5. Which of the following is affected by catalyst?

(a) ΔH

(b) ΔG

(c) E_a

(d) ΔS

6. The order of the reaction

$$H_2(g) + Cl_2(g) \xrightarrow{hv} 2HCl(g)$$
 is:

(a) 2

(b) 1

(c) 0

(d) 3

7. The most common and stable oxidation state of a Lanthanoid is :

(a) + 2

(b) +3

(c) + 4

(d) + 6

8. The compounds $[\text{Co(SO}_4) \, (\text{NH}_3)_5] \, \text{Br} \, \text{ and } \, [\text{Co(Br)} \, (\text{NH}_3)_5] \, \text{SO}_4 \, \text{represent} :$

- (a) optical isomerism
- (b) linkage isomerism
- (c) ionisation isomerism
- (d) coordination isomerism

9. The synthesis of alkyl fluoride is best obtained from :

(a) Free radicals

- (b) Swartz reaction
- (c) Sandmeyer reaction
- (d) Finkelstein reaction

10. In the reaction R – OH + HCl $\xrightarrow{\text{ZnCl}_2}$ RCl + H₂O, what is the correct order of reactivity of alcohol ?

(a) $1^{\circ} < 2^{\circ} < 3^{\circ}$

(b) $1^{\circ} > 3^{\circ} > 2^{\circ}$

(c) $1^{\circ} > 2^{\circ} > 3^{\circ}$

(d) $3^{\circ} > 1^{\circ} > 2^{\circ}$

56/1/1

(5)

P.T.O.

11.	ऐल्कोह	<u>इ</u> ॉली माध्य	म में NaOH और	Br_2 के साथ CH	$ m H_{3}CONH_{2}$ अभिक्रिया करके देता है :
	(a)	$\mathrm{CH_{3}CC}$	OONa	(b)	$\mathrm{CH_{3}NH_{2}}$
	(c)	CH_3CH	$ m H_2Br$	(d)	$\mathrm{CH_{3}CH_{2}NH_{2}}$
12.	निम्नलि	नखित में से	ने कौन-सा सबसे का	न क्षारकीय है ?	
	(a)	$(CH_3)_2$	NH	(b)	NH_3
	(c)		$- \mathrm{NH}_2$	(d)	$(CH_3)_3N$
13.		के ऐमिलेस	। घटक में ग्लूकोस	इकाइयों को जोड़	ने के लिए सम्मिलित ग्लाइकोसाइडी बंध
	है : (a)	$C_1 - C_0$	્ ત હાંઘ	(h)	$\mathrm{C}_1 - \mathrm{C}_6 \;\; \beta \; \dot{a}$ ध
		$C_1 - C_2$	•	(d)	$\mathrm{C}_1 - \mathrm{C}_4^ \beta$ बंध
14.	α-हेलि	क्स संरचन	गत्मक लक्षण है :		
	(a)	सूक्रोस व	न	(b)	स्टार्च का
	(c)	पॉलिपेप्ट	ाइडों का	(d)	न्यूक्लिओटाइडों का
प्रश्न संख्या 15 से 18 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (a), (b), (c) और (d) में से चुनकर दीजिए।					
	(a)	अभिकथ	_		हैं और कारण (R), अभिकथन (A) की
	(b) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या <i>नहीं</i> करता है।				
	(c)	अभिकथ	न (A) सही है, परन्	तु कारण (R) ग़ल	ात है ।
	(d)	अभिकथ	न (A) ग़लत है, पर	न्तु कारण (R) स	ही है ।
15.			होता है ।		ओं में $-\!$
	कारण	(R):	ऐनिलीन फ्रीडेल-क्र	गफ्ट्स अभिक्रिया	नहीं दे सकती है।
56/1/	1			6	

- 11. CH₃CONH₂ on reaction with NaOH and Br₂ in alcoholic medium gives :
 - (a) CH₃COONa

(b) CH_3NH_2

 $(c) \qquad CH_{3}CH_{2}Br$

- (d) $CH_3CH_2NH_2$
- **12.** Which of the following is least basic?
 - (a) $(CH_3)_2NH$

(b) NH_3

(c) \sim NH₂

- (d) $(CH_3)_3N$
- **13.** The glycosidic linkage involved in linking the glucose units in amylase part of starch is:
 - (a) $C_1 C_6 \alpha linkage$
- (b) $C_1 C_6 \beta \text{ linkage}$
- (c) $C_1 C_4 \alpha linkage$
- (d) $C_1 C_4 \beta linkage$
- **14.** An α -helix is a structural feature of :
 - (a) Sucrose

(b) Starch

(c) Polypeptides

(d) Nucleotides

For Questions number 15 to 18, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- (d) Assertion (A) is false, but Reason (R) is true.
- **15.** Assertion (A): $-NH_2$ group is o- and p-directing in electrophilic substitution reactions.
 - Reason (R): Aniline cannot undergo Friedel-Crafts reaction.

56/1/1

 $\overline{7}$

P.T.O.

- **16.** अभिकथन (A) : ऐनिलीन के ऐसीटिलन से एकल प्रतिस्थापित उत्पाद बनता है । $= NHCOCH_3$ समूह का सिक्रियण प्रभाव ऐमीनो समूह से अधिक होता है ।
- 17. अभिकथन (A) : अभिक्रिया $H_2+Br_2\longrightarrow 2HBr$ में आण्विकता 2 प्रतीत होती है । कारण (R) : दी हुई प्राथिमक अभिक्रिया में अभिकारकों के दो अणु भाग लेते हैं ।
- 18. अभिकथन (A): निम्न प्रचक्रण चतुष्फलकीय संकुल विरले ही देखे जाते हैं।

 कारण (R): चतुष्फलकीय संकुलों के लिए युग्मन ऊर्जा की तुलना में क्रिस्टल क्षेत्र
 विपाटन ऊर्जा कम होती है।

खण्ड ख

- 19. हेनरी नियम क्या है ? इसका एक अनुप्रयोग दीजिए ।
- **20.** (क) दो विद्युत्-अपघट्यों 'A' और 'B' का तनुकरण करने पर, 'A' की ∧_m 25 गुना बढ़ती है जबिक B की 1·5 गुना बढ़ती है। इनमें से कौन-सा विद्युत्-अपघट्य प्रबल है ? अपने उत्तर की पुष्टि के लिए ग्राफ खींचिए।

अथवा

- (ख) $0.05~{
 m mol~L}^{-1}~{
 m NaOH}$ विलयन के कॉलम का विद्युत प्रतिरोध $5.55\times 10^3~{
 m ohm}$ है । इसका व्यास 1 cm एवं लम्बाई 50 cm है । इसकी चालकता का परिकलन कीजिए ।
- 21. निम्नलिखित समीकरणों को पूर्ण कीजिए:
 - (ক) $2MnO_4^- + 5NO_2^- + 6H^+ \longrightarrow$
 - (평) $\operatorname{Cr}_2\operatorname{O}_7^{2-} + 14\operatorname{H}^+ + 6\operatorname{e}^- \longrightarrow$
- 22. (ক) $CH_3 CH CH_3 \xrightarrow{PCl_5}$ 'A' \xrightarrow{AgCN} 'B' OH
 - (ख) $\mathrm{CH_3CH_2CH_2Cl} + \mathrm{KOH} \xrightarrow{\quad \mathrm{v}\hat{\mathrm{v}}\hat{\mathrm{a}} \mathrm{Times} } \mathrm{'A'} \xrightarrow{\quad \mathrm{HBr} \quad } \mathrm{'B'}$ उपर्युक्त अभिक्रियाओं में 'A' और 'B' को पहचानिए ।

1+1=2

2

2

2

1+1=2

56/1/1

CLICK HERE

16. Assertion (A): Acetylation of aniline gives a monosubstituted product.

Reason (R): Activating effect of $-NHCOCH_3$ group is more than that of amino group.

17. Assertion (A): The molecularity of the reaction $H_2 + Br_2 \longrightarrow 2HBr$ appears to be 2.

Reason(R): Two molecules of the reactants are involved in the given elementary reaction.

18. Assertion (A): Low spin tetrahedral complexes are rarely observed.

Reason(R): Crystal field splitting energy is less than pairing energy for tetrahedral complexes.

SECTION B

19. What is Henry's law? Give one application of it.

20. (a) On diluting two electrolytes 'A' and 'B', the \wedge_m of 'A' increases 25 times while that of 'B' increases by 1.5 times. Which of the two electrolytes is strong? Justify your answer graphically.

OR

- (b) The electrical resistance of a column of 0.05 mol L^{-1} NaOH solution of diameter 1 cm and length 50 cm is 5.55×10^3 ohm. Calculate the conductivity.
- **21.** Complete the following equations: 1+1=2
 - (a) $2\text{MnO}_4^- + 5\text{NO}_2^- + 6\text{H}^+ \longrightarrow$
 - (b) $\operatorname{Cr}_2 \operatorname{O}_7^{2-} + 14 \operatorname{H}^+ + 6 \operatorname{e}^- \longrightarrow$
- 22. (a) $CH_3 CH CH_3 \xrightarrow{PCl_5} A' \xrightarrow{AgCN} B'$ OH
 - (b) $CH_3CH_2CH_2Cl + KOH \xrightarrow{ethanol} 'A' \xrightarrow{HBr} 'B'$ Identify 'A' and 'B' in the above reactions. 1+1=2

56/1/1

2

2

निम्नलिखित के लिए कारण दीजिए : 23. (क)

1+1=2

- ऐल्कोहॉल की तुलना में फ़ीनॉल अधिक प्रबल अम्ल होता है। (i)
- ऐल्कोहॉलों के क्वथनांक ऐल्किल शृंखला में शृंखलन बढ़ने के साथ घटते हैं। (ii)

अथवा

निम्नलिखित अभिक्रिया की क्रियाविधि लिखिए: (碅) (i)

$$CH_3CH_2OH \xrightarrow{H^+} CH_2 = CH_2 + H_2O$$

राइमर-टीमन अभिक्रिया में सम्मिलित समीकरण लिखिए । (ii)

1+1=2

संक्षेप में व्याख्या कीजिए : 24.

1+1=2

- कार्बिलऐमीन अभिक्रिया (क)
- गैब्रिएल थैलिमाइड संश्लेषण (ख)
- एक रासायनिक समीकरण लिखिए, यह दर्शाने के लिए कि D-ग्लूकोस की विवृत (क) **25.** संरचना में ऋजु शृंखला होती है।
 - प्रोटीन के निर्माण के लिए किस प्रकार का बंध उत्तरदायी होता है ? (ख)

2

खण्ड ग

- आदर्श विलयन और अनादर्श विलयन के मध्य अंतर लिखिए । (क) **26.**
 - $846~\mathrm{g}$ जल में $30~\mathrm{g}$ यूरिया घोला गया है । यदि $298~\mathrm{K}$ पर शुद्ध जल का वाष्प दाब (ख) 23.8 mm Hg है, तो इस विलयन के लिए जल का वाष्प दाब परिकलित कीजिए। 3
- निर्मित मुख्य उत्पाद लिखिए जब : **27.**

 $3 \times 1 = 3$

- मेथिल क्लोराइड को NaI/ऐसीटोन के साथ अभिक्रियित किया जाता है। (क)
- 2,4,6-ट्राइनाइट्रोक्लोरोबेंज़ीन का जल-अपघटन किया जाता है। (ख)
- n-ब्यूटिल क्लोराइड को ऐल्कोहॉली KOH के साथ अभिक्रियित किया जाता है। (₁)
- आप निम्नलिखित रूपान्तरण कैसे सम्पन्न करेंगे : (कोई *तीन*) 28.

 $3 \times 1 = 3$

- फ़ीनॉल से पिक्रिक अम्ल (क)
- प्रोपेनोन से 2-मेथिलप्रोपेन-2-ऑल (ख)
- फ़ीनॉल से ऐनिसोल (₁)
- प्रोपीन से प्रोपेन-1-ऑल (घ)

23. Account for the following: 1+1=2(a) (i) Phenol is a stronger acid than an alcohol. (ii) The boiling point of alcohols decreases with increase in branching of alkyl chain. OR (b) (i) Write the mechanism of the following reaction: $CH_3CH_2OH \xrightarrow{H^+} CH_2 = CH_2 + H_2O$ Write the equation involved in Reimer-Tiemann reaction. (ii) 1+1=2**24.** Explain briefly: 1+1=2Carbylamine reaction (a) (b) Gabriel phthalimide synthesis **25.** (a) Write chemical reaction to show that open structure of D-glucose contains the straight chain. (b) What type of linkage is responsible for the formation of protein? 2 **SECTION C** 26. (a) Differentiate between Ideal solution and Non-ideal solution. 30 g of urea is dissolved in 846 g of water. Calculate the vapour (b) pressure of water for this solution if vapour pressure of pure water at 298 K is 23.8 mm Hg. 3 27. Write main product formed when: $3 \times 1 = 3$ Methyl chloride is treated with NaI/Acetone. (b) 2,4,6-trinitrochlorobenzene is subjected to hydrolysis. (c) n-Butyl chloride is treated with alcoholic KOH. 28. How do you convert the following : (Any *three*) $3 \times 1 = 3$ (a) Phenol to picric acid (b) Propanone to 2-Methylpropan-2-ol (c) Phenol to anisole (d) Propene to Propan-1-ol

CLICK HERE >>>

11

www.studentbro.in

P.T.O.

56/1/1

29. (क) व्याख्या कीजिए क्यों :

 $3 \times 1 = 3$

- (i) बेन्ज़ोइक अम्ल में कार्बोक्सिल समूह मेटा निर्देशक होता है।
- (ii) ऐल्डिहाइडों और कीटोनों के परिष्करण के लिए सोडियम बाइसल्फाइट प्रयुक्त किया जाता है।
- (iii) कार्बोक्सिलिक अम्ल, कार्बोनिल समूह की अभिलक्षणिक अभिक्रियाएँ नहीं देते हैं।

अथवा

- (ख) एक कार्बनिक यौगिक 'A' जिसका अणुसूत्र C_3H_8O है, 573~K पर Cu के साथ अभिक्रियित करने पर 'B' देता है । 'B' फेलिंग विलयन को अपचित नहीं करता है लेकिन $I_2/NaOH$ के साथ यौगिक 'C' का पीला अवक्षेप देता है । A, B और C संरचनाओं का निगमन कीजिए ।
- **30.** (क) (i) लैक्टोस, (ii) माल्टोस के जल-अपघटन के उत्पाद क्या हैं ?
 - (ख) स्टार्च और सेलुलोस के मध्य मूलभूत संरचनात्मक अंतर दीजिए।

2+1=3

3

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं । केस को सावधानीपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए ।

31. अभिक्रिया वेग, इकाई समय में अभिकारकों की सांद्रता घटने अथवा उत्पादों की सांद्रता वृद्धि से संबंधित होता है । इसे किसी क्षण विशेष पर तात्क्षणिक वेग के रूप में और किसी दीर्घ समय अंतराल में औसत वेग से प्रदर्शित किया जा सकता है । अभिक्रिया वेग के गणितीय निरूपण को वेग नियम कहते हैं । वेग स्थिरांक एवं अभिक्रिया की कोटि का निर्धारण वेग नियम अथवा समाकलित वेग समीकरण द्वारा कर सकते हैं ।

56/1/1

29. (a) Explain why:

 $3 \times 1 = 3$

3

- (i) Carboxyl group in benzoic acid is meta directing.
- (ii) Sodium bisulphite is used for the purification of aldehydes and ketones.
- (iii) Carboxylic acids do not give characteristic reactions of carbonyl group.

OR.

- (b) An organic compound 'A', having the molecular formula C_3H_8O on treatment with Cu at 573 K, gives 'B'. 'B' does not reduce Fehling's solution but gives a yellow precipitate of the compound 'C' with $I_2/NaOH$. Deduce the structures of A, B and C.
- **30.** (a) What are the hydrolysis products of (i) Lactose, (ii) Maltose?
 - (b) Give the basic structural difference between starch and cellulose. 2+1=3

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

31. The rate of reaction is concerned with decrease in concentration of reactants or increase in the concentration of products per unit time. It can be expressed as instantaneous rate at a particular instant of time and average rate over a large interval of time. Mathematical representation of rate of reaction is given by rate law. Rate constant and order of a reaction can be determined from rate law or its integrated rate equation.

P.T.O.

56/1/1

(i) औसत अभिक्रिया वेग क्या होता है ?

1

(ii) दो कारक लिखिए जो अभिक्रिया की दर को प्रभावित करते हैं।

- 1
- (iii) (1) शून्य कोटि की अभिक्रिया के लिए अभिक्रिया वेग को क्या होता है ?
 - (2) शून्य कोटि की अभिक्रिया के लिए k की इकाई क्या है ?

2×1=2

अथवा

- (iii) (1) एक अभिक्रिया $P + 2Q \longrightarrow 3$ तपाद के लिए वेग = $k[P]^{1/2} [Q]^1$ है । अभिक्रिया की कोटि क्या है ?
 - (2) एक उदाहरण सहित छद्म प्रथम कोटि अभिक्रिया को परिभाषित कीजिए । $2 \times 1 = 2$
- 32. उपसहसंयोजन यौगिकों में धातुएँ दो प्रकार की संयोजकताएँ, प्राथमिक और द्वितीयक, प्रदर्शित करती हैं । प्राथमिक संयोजकताएँ आयननीय होती हैं तथा ऋणात्मक आवेशित आयनों द्वारा संतुष्ट होती हैं । द्वितीयक संयोजकताएँ अन-आयननीय होती हैं और एकाकी इलेक्ट्रॉन युग्म युक्त उदासीन अथवा ऋणात्मक आयनों द्वारा संतुष्ट होती हैं । प्राथमिक संयोजकताएँ अदिशिक होती हैं जबिक द्वितीयक संयोजकताएँ संकुल की आकृति निर्धारित करती हैं ।
 - (i) यदि $PtCl_2$. $2NH_3$, $AgNO_3$ के साथ अभिक्रिया नहीं करता है, तो इसका सूत्र क्या होगा ?
 - (ii) $[Co(en)_3]^{3+}$ की द्वितीयक संयोजकता क्या है ?

1

1

- (iii) (1) आयरन(III)हैक्सासायनिडोफेरेट(II) का सूत्र लिखिए।
 - (2) $[{
 m Co(NH_3)}_5{
 m Cl}] \ {
 m Cl}_2$ का आई.यू.पी.ए.सी. नाम लिखिए ।

 $2\times1=2$

अथवा

(iii) $[Ni(CN)_4]^{2-}$ का संकरण एवं चुम्बकीय व्यवहार लिखिए । [परमाणु संख्या : Ni = 28]

2

56/1/1

- (i) What is average rate of reaction? 1 (ii) Write two factors that affect the rate of reaction. 1 (iii) What happens to rate of reaction for zero order reaction? What is the unit of k for zero order reaction? $2 \times 1 = 2$ (2)OR For a reaction $P + 2Q \longrightarrow Products$ (iii) **(1)** Rate = $k[P]^{1/2}[Q]^1$. What is the order of the reaction? Define pseudo first order reaction with an example. (2) $2 \times 1 = 2$ In coordination compounds, metals show two types of linkages, primary and secondary. Primary valencies are ionisable and are satisfied by negatively charged ions. Secondary valencies are non-ionisable and are satisfied by neutral or negative ions having lone pair of electrons. Primary valencies are non-directional while secondary valencies decide the shape of the complexes. (i) If PtCl₂ . 2NH₃ does not react with AgNO₃, what will be its formula? 1 What is the secondary valency of $[Co(en)_3]^{3+}$? (ii)1 Write the formula of Iron(III)hexacyanidoferrate(II). (iii) (1) $2 \times 1 = 2$ (2)Write the IUPAC name of $[Co(NH_3)_5Cl] Cl_2$. OR
- Write the hybridization and magnetic behaviour of $[Ni(CN)_4]^{2-}$. (iii) [Atomic number : Ni = 28]

56/1/1 15

P.T.O.

2

32.

खण्ड ङ

- 33. (क) (i) आयनों के स्वतंत्र अभिगमन का कोलराऊश नियम लिखिए । कोलराऊश नियम के अनुसार ऐसीटिक अम्ल की सीमांत मोलर चालकता के लिए व्यंजक लिखिए ।
 - (ii) 298 K पर दी गई अभिक्रिया के लिए अधिकतम कार्य और $\log K_c$ परिकलित कीजिए :

Ni (s) + 2Ag+ (aq)
$$\rightleftharpoons$$
 Ni²⁺ (aq) + 2Ag (s)
दिया गया है : $E_{\text{Ni}\,^{2+}/\text{Ni}}^{\circ} = -0.25\,\text{V}, \quad E_{\text{Ag}^{+}/\text{Ag}}^{\circ} = +0.80\,\text{V}$
1 F = 96500 C mol⁻¹ 2+3=5

अथवा

- (ख) (i) फैराडे के विद्युत्-अपघटन का प्रथम नियम लिखिए। 1 मोल Cu^{2+} को Cu में अपचियत करने के लिए फैराडे के पदों में कितना आवेश आवश्यक होगा ?
 - (ii) 298 K पर निम्नलिखित सेल का विद्युत्-वाहक बल (emf) परिकलित कीजिए:

Mg (s) | Mg²⁺ (0·1 M) || Cu²⁺ (0·01 M) | Cu (s)
[
$$E_{HC}^{\circ}$$
 = + 2·71 V, 1 F = 96500 C mol⁻¹, log 10 = 1] 2+3=5

34. निम्नलिखित प्रत्येक के लिए कारण दीजिए:

 $5 \times 1 = 5$

- (i) संक्रमण तत्त्वों की 3d श्रेणी में से मैंगनीज़ +7 की उच्चतम ऑक्सीकरण अवस्था प्रदर्शित करता है।
- (ii) संक्रमण धातुएँ और उनके यौगिक रासायनिक अभिक्रियाओं में सामान्यत: अच्छे उत्प्रेरक होते हैं।
- (iii) ${
 m Cr}^{2+}$ अपचायक प्रकृति का है जबिक उसी ${
 m d}$ -कक्षक विन्यास $({
 m d}^4)$ का ${
 m Mn}^{3+}$ एक ऑक्सीकारक है ।
- (iv) Zn की कणन एन्थैल्पी न्यूनतम होती है।
- (v) जलीय विलयन में Cu+ अस्थायी होता है।

56/1/1

SECTION E

- 33. (a) (i) State Kohlrausch's law of independent migration of ions. Write an expression for the limiting molar conductivity of acetic acid according to Kohlrausch's law.
 - Calculate the maximum work and log K_c for the given (ii) reaction at 298 K:

Ni (s) + 2Ag⁺ (aq)
$$\rightleftharpoons$$
 Ni²⁺ (aq) + 2Ag (s)
Given: $E_{Ni^{2+}/Ni}^{\circ} = -0.25 \text{ V}, \quad E_{Ag^{+}/Ag}^{\circ} = +0.80 \text{ V}$
1 F = 96500 C mol⁻¹ 2+3=5

OR

- (b) State Faraday's first law of electrolysis. How much charge, in (i) terms of Faraday, is required for the reduction of 1 mol Cu²⁺ to Cu?
 - Calculate emf of the following cell at 298 K for (ii) $Mg(s) \mid Mg^{2+}(0.1 \text{ M}) \parallel Cu^{2+}(0.01 \text{ M}) \mid Cu(s)$ $[E_{cell}^{\circ} = + 2.71 \text{ V}, 1 \text{ F} = 96500 \text{ C mol}^{-1}, \log 10 = 1]$ 2+3=5
- 34. Assign reason for each of the following:

 $5\times1=5$

- (i) Manganese exhibits the highest oxidation state of +7 among the 3d series of transition elements.
- (ii)Transition metals and their compounds are generally found to be good catalysts in chemical reactions.
- (iii) Cr²⁺ is reducing in nature while with the same d-orbital configuration (d⁴) Mn³⁺ is an oxidising agent.
- (iv) Zn has lowest enthalpy of atomization.
- (v) Cu⁺ is unstable in an aqueous solution.

P.T.O.

CLICK HERE

- 35. (क) (i) निम्नलिखित रूपान्तरणों को सम्पन्न कीजिए :
 - (1) एथेनैल से ब्यूट-2-ईन-1-अल
 - (2) प्रोपेनॉइक अम्ल से 2-क्लोरोप्रोपेनॉइक अम्ल
 - (ii) C_5H_{10} अणुसूत्र वाला एक ऐल्कीन ओज़ोनी-अपघटन से दो यौगिकों 'B' और 'C' का मिश्रण देता है । यौगिक 'B' धनात्मक फेलिंग परीक्षण देता है और I_2 तथा NaOH विलयन के साथ भी अभिक्रिया करता है । यौगिक 'C' फेलिंग विलयन परीक्षण नहीं देता लेकिन आयोडोफॉर्म निर्मित करता है । यौगिक 'A', 'B' और 'C' को पहचानिए । 2+3=5

अथवा

- (ख) (i) उपयुक्त रासायनिक परीक्षण से विभेद कीजिए:
 - (1) CH₃COCH₂CH₃ और CH₃CH₂CH₂CHO
 - (2) एथेनैल और ऐथेनॉइक अम्ल
 - (ii) ऐसीटोन के ऑक्सिम की संरचना लिखिए।
 - (iii) A से D को पहचानिए।

2+1+2=5

$$CH_{3}COOH \xrightarrow{PCl_{5}} A \xrightarrow{H_{2}/Pd-BaSO_{4}} B \xrightarrow{(i) CH_{3}/MgBr} C$$

$$\downarrow LiAlH_{4}$$

- **35.** (a) (i) Carry out the following conversions:
 - **(1)** Ethanal to But-2-en-1-al
 - (2)Propanoic acid to 2-chloropropanoic acid
 - An alkene with molecular formula $\mathrm{C}_5\mathrm{H}_{10}$ on ozonolysis gives (ii) a mixture of two compounds 'B' and 'C'. Compound 'B' gives positive Fehling test and also reacts with iodine and NaOH solution. Compound 'C' does not give Fehling solution test but forms iodoform. Identify the compounds 'A', 'B' and 'C'. 2+3=5

OR

- (b) (i) Distinguish with a suitable chemical test:
 - CH₃COCH₂CH₃ and CH₃CH₂CH₂CHO (1)
 - (2)Ethanal and Ethanoic acid
 - (ii) Write the structure of oxime of acetone.
 - Identify A to D. $\text{CH}_{3}\text{COOH} \xrightarrow{\text{PCl}_{5}} \text{A} \xrightarrow{\text{H}_{2}/\text{Pd-BaSO}_{4}} \text{B} \xrightarrow{\text{(i) CH}_{3}/\text{MgBr} \atop \text{(ii) H}_{3}\text{O}^{+}}} \text{C}$

2+1+2=5

(iii)

Marking Scheme Strictly Confidential

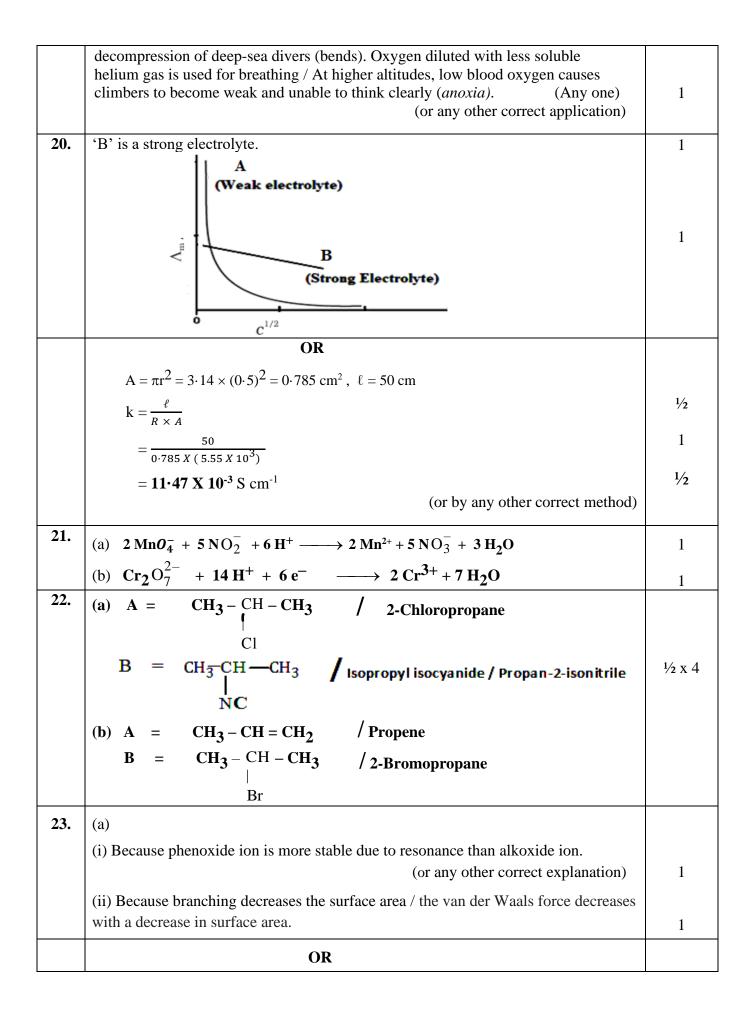
(For Internal and Restricted use only)
Senior Secondary School Examination,2023.
SUBJECT: CHEMISTRY (043) (56/1/1)

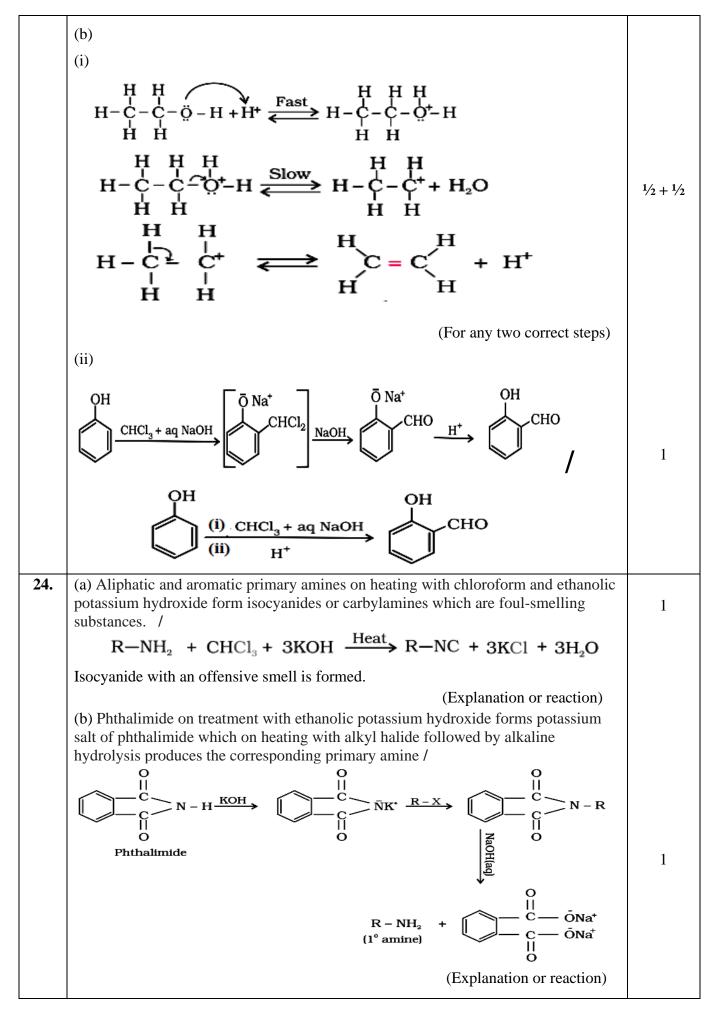
General Instructions: -

- You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
- "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-XII, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
- The Marking scheme carries only suggested value points for the answers
 These are in the nature of Guidelines only and do not constitute the complete
 answer. The students can have their own expression and if the expression is
 correct, the due marks should be awarded accordingly.
- The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- Evaluators will mark(√) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (✓) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks 70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
13	Ensure that you do not make the following common types of errors committed by the Examiner in the past:- Leaving answer or part thereof unassessed in an answer book.
	Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded an an analysis.
	 Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page.
	 Wrong question wise totaling on the title page.
	 Wrong totaling of marks of the two columns on the title page. Wrong grand total.
	 Marks in words and figures not tallying/not same.
	 Wrong transfer of marks from the answer book to online award list.
	 Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
	 Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME


Senior Secondary School Examination, 2023


CHEMISTRY (Subject Code-043)

[Paper Code: 56/1/1]

Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks
	SECTION-A	
1.	(a)	1
2.	(c)	1
3.	(d)	1
4.	(c)	1
5.	(c)	1
6.	(c) / Full mark to be awarded for any option	1
7.	(b)	1
8.	(c)	1
9.	(b)	1
10.	(a)	1
11.	(b)	1
12.	(c)	1
13.	(c) / Award full mark if attempted (Printing error)	1
14.	(c)	1
15.	(b)	1
16.	(c)	1
17.	(a)	1
18.	(a)	1
	SECTION- B	
19.	Henry's law states that the partial vapour pressure of a gas is directly proportional to the mole fraction of the gas in the solution $/p = K_H x$ where $p =$ partial pressure of gas, $x =$ mole fraction in solution, and k_H is Henry's constant. Application :	1
	To increase the solubility of CO ₂ in soft drinks and soda water, the bottle is sealed under high pressure / to minimize the painful effects accompanying the	

25.	(a) CHO		
	$(CHOH)_4$ $\xrightarrow{HI, \Delta}$ $CH_3-CH_2-CH_2-CH_2-CH_3$		
	CH ₂ OH (<i>n</i> -Hexane)		
	(b) Peptide linkage		1
	SI	ECTION-C	
26.	(a)		
	Ideal Solution	Non-ideal solution	
	The solution obeys Raoult's law at all concentrations.	The solution does not obey Raoult's law.	1
	$\Delta V mixing = 0$ and $\Delta H_{mixing} = 0$	$\Delta V_{mixing} \neq 0$ and $\Delta H_{mixing} \neq 0$. (Any one)	
		(or any other correct difference)	
	(b) $\frac{P_{A}^{0} - P_{A}}{P_{A^{0}}} = \frac{\frac{W_{B}}{M_{B}}}{\frac{W_{B}}{M_{B}} + \frac{W_{A}}{M_{A}}}$		1/2
	$1 - \frac{P_{A}}{23 \cdot 8} = \frac{\frac{30}{60}}{\frac{846}{18}}$	or $1 - \frac{P_A}{23.8} = \frac{\frac{30}{60}}{\frac{846}{18} + \frac{30}{60}}$	1
	$P_A = \frac{46.5}{47} \times 23.8 = 23.5 \text{ mm Hg}$ or $P_A = \frac{47}{47.5} \times 23.8 = 23.5 \text{ mm Hg}$ (Full marks may be awarded if the student substitutes M_B for molar mass as the molar mass of urea is not given in the question)		
	molar mass of urea is not given in the question).		
27.	3	ethane / Methyl iodide	
	(b) $O_2N \longrightarrow NO_2$		1 x 3
	(c) $CH_3CH_2CH = CH_2$ / Bu	2,4,6-Trinitrophenol / 2,4,6-Trinitrobenzenol nt-1-ene	
28.	(a) OH Conc. HNO ₃ O ₂ N	OH NO ₂ NO ₂	
	(b) $CH_3 - C - CH_3 \qquad (i) \cdot CH_3N$ $ \qquad (ii) H_2O$	→ CHC-OH	1 x 3


XII_39_043_56/1/1_Chemistry # Page- $\boldsymbol{6}$

	(c) OH OCH ₃		
	+ NaOH — CH3I		
	(d)		
	$CH_3-CH=CH_2 \xrightarrow{(i) (H-BH_2)_2} CH_3-CH_2-CH_2-OH$		
	CH_3 - CH_2 -		
	(or by any other correct method)		
29.	(a)		
29.	(i) Because it is an electron-withdrawing group / deactivating group / -R effect,		
	electrophilic substitution takes place at the m-position.		
	(ii) Because aldehydes & ketones form addition compound with NaHSO ₃ which on	1 x 3	
	hydrolysis forms pure aldehydes & ketones.		
	(iii) Due to resonance, carboxylic carbon becomes less electrophilic.		
	OR		
	(b)		
	CH ₃ -CH - CH ₃ Cu ₃ , 573 K CH ₃ COCH ₃ NaOH/ I ₂ CHI ₃ OH		
	(C)	4 0	
	(A)	1 x 3	
	(or explanation with correct structures of A, B, and C)		
30.	(a) (i) Glucose and Glucose (ii) Glucose and Glucose	1+1	
	(b) Starch is a polymer of α -glucose while cellulose is a polymer of β -glucose	1	
	(or any other correct structural difference) SECTION-D	1	
31.	(i) Change in the concentration of a reactant or product per unit time.		
31.	(ii) Concentration of reactants, Surface area, catalyst and temperature (any two).	1	
	(iii) (1) rate is independent of the concentration of reactant(s) /rate remains constant /		
	rate = k		
	(2) mol L^{-1} s ⁻¹	1+1	
	OR		
	(iii) (1) 3/2 / 1.5	1	
	(2) A reaction that appears to be of higher order but follows first-order kinetics. Example: Hydrolysis of an ester (or any other correct example)	1/2 1/2	
32.	Example: Hydrolysis of an ester (or any other correct example) (i) [Pt(NH ₃) ₂ Cl ₂]	1/2, 1/2	
	(ii) 6	1	
	(iii) (1) Fe ₄ [Fe(CN) ₆] ₃	•	
	(2) Pentamminechloridocobalt(III) chloride.	1,1	
	OR	-,-	
	(iii) dsp ² , diamagnetic	1,1	
	SECTION-E		
33.	(a)		
	(i) Limiting molar conductivity of an electrolyte can be represented as the sum of the	1	
	individual contributions of the anion and cation of the electrolyte.		
	$\lambda_{\rm m}^{\circ}$ (cm coop) $= \lambda_{\rm m}^{\circ}$ cm coop $\pm \lambda_{\rm m}^{\circ}$ wh	1	
	$^{\wedge}_{\text{m}} (\text{CH}_{3}\text{COOH}) = ^{\lambda^{\circ}}_{\text{CH}_{3}\text{COO}^{-}} + ^{\lambda^{\circ}}_{\text{H}^{+}}$	1	

	(ii) $\Delta_{\mathbf{r}}G^{\circ} = -nFE_{\text{cell}}^{\circ}$	
	Maximum work = $-\Delta_r G^{\circ} = nFE_{cell}^{\circ}$	1/2
	$= 2 \times 96500 \text{ C mol}^{-1} \times (0.80 + 0.25) \text{ V}$	1/2
	$= 2 \times 96500 \times 1.05 \text{ J mol}^{-1}$	
	$= 202,650 \text{ J mol}^{-1} \text{ or } 202.65 \text{ kJ mol}^{-1}$	1
	$\log K_{\rm C} = \frac{nE_{\rm cell}^{\circ}}{0.059}$	1/2
	$= \frac{2 \times 1.05}{0.059} = 35.6$	1/2
	OR	
	(b) (i) It states that the mass of a substance deposited /liberated at the electrodes is directly proportional to the charge/quantity of electricity passed through the electrolyte.	1
	2F charge is required.	1
	(ii) $E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{2} \log \frac{[\text{Mg}^{2+}]}{[\text{Cu}^{2+}]}$	1
	$= 2.71 \text{ V} - \frac{0.0591}{2} \log \frac{0.1}{0.01}$	
	$= 2.71 \text{ V} - \frac{0.0591}{2} \log 10$	1
	$= 2.71 \text{ V} - 0.0295$ $= 2.68 \text{ V}. \qquad \text{(Deduct } \frac{1}{2} \text{ mark for no or incorrect unit)}$	1
34.	(i) Due to the participation of all 3d and 4s electrons in bond formation /due to the	1
	presence of maximum number of unpaired electrons.	1
	(ii) Due to variable oxidation state / due to the ability to adopt multiple oxidation states / due to the large surface area / due to complex formation.	1
	(iii) Cr ²⁺ changes from d ⁴ to stable half-filled t _{2g} ³ configuration while Mn ³⁺ changes to stable half-filled d ⁵ configuration.	1
	(iv) Due to the absence of unpaired electrons and weak interatomic interactions.	1
	(v) Cu ⁺ ion (aq.) undergoes disproportionation to Cu ²⁺ (aq.) and Cu /	
	$2 \operatorname{Cu}^{+}(\operatorname{aq.}) \longrightarrow \operatorname{Cu}^{2+}(\operatorname{aq.}) + \operatorname{Cu}(\operatorname{s})$	1
35.	(a) (i)	
	(1) CH2CHO dil. NaOH CH2CH CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH	1
	$CH_3CHO \xrightarrow{\text{dil. NaOH}} CH_3CH_CH_2_CHO \xrightarrow{\Delta} CH_3_CH_CH_CHO$	
	OH (2)	
	$CH_3 CH_2 - COOH \xrightarrow{\text{(i)} Cl_2 / Red P} CH_3 - CH - COOH$	1
	CI	

(ii) CH₃—CH=C—CH₃ / 2-Methylbut-2-ene Ethanal / Acetaldehyde H₃C-CHO 1 x 3 / Propanone / Acetone OR (b) (i) (1) Add Iodine (I₂), NaOH, and heat both the test tubes containing the given 1 organic compounds. Butanone gives yellow precipitate (CHI3) while butanal will not give the positive iodoform test. (2) Add NaHCO₃ in both the test tube containing the given organic compounds. Ethanoic acid will give brisk effervescence of CO₂ and ethanal will not. 1 (or any other suitable chemical test) (ii) 1 (iii) $A = CH_3COCl$, ½ x 4

* * *